Decreased Energy Capacity and Increased Autophagic Activity in Optic Nerve Axons With Defective Anterograde Transport.
نویسندگان
چکیده
PURPOSE Autophagy is a critical process, compromised in neurodegenerative disease, by which terminally differentiated cells like neurons manage cytoskeletal and organelle turnover. How autophagy relates to associated neurodegenerative pathologies remain unclear. We examined autophagy in optic neuropathy by investigating cytoskeletal degradation, mitochondria, and autophagic vesicles in the DBA2/J mouse model of glaucoma exhibiting differing levels of axon transport functionality. METHODS DBA/2J and DBA/2J(wt-gpnmb) control mice 11 to 14 months of age were injected with cholera toxin-B (CTB) to assay anterograde axonal transport. Axonal mitochondria and autophagic vesicles were analyzed with respect to transport integrity in proximal and distal optic nerve using serial block face scanning electron microscopy (3D EM). RESULTS Several indices varied significantly between the DBA/2J and DBA/2J(wt-gpnmb) mice, including mitochondrial volume, average number of autophagic vesicles per axon, and mitochondrial cristae. However, there were no differences in mitochondrial cristae for axons with functional versus dysfunctional CTB transport, suggesting that mitochondrial dysfunction precedes overt transport blockade. Anterograde transport failure was accompanied by a dissociation of the relationship between mitochondrial and axon volumes. Autophagic vesicle profiles were significantly increased in optic nerve with transport deficit, consistent with greater autophagic activity. Mitochondria within autophagosomes, indicative of mitophagy, were observed in both proximal and distal axons. CONCLUSIONS Loss of anterograde transport in DBA/2J optic nerve is concomitant with diminished mitochondrial volume, increased cytoskeletal breakdown and autophagic activity, and accumulation of autophagic profiles, including signs of mitophagy, in proximal optic nerve. Axons with transport deficit are metabolically underserved, though not necessarily from mitophagy.
منابع مشابه
Oral Delivery of a Synthetic Sterol Reduces Axonopathy and Inflammation in a Rodent Model of Glaucoma
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease is the leading cause of irreversible blindness worldwide. Early progression in glaucoma involves dysfunction of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Deficits in anterograde transport along RGC axons to central visual structures precede outright...
متن کاملGeneration of retinal ganglion cells with functional axons from human induced pluripotent stem cells
We generated self-induced retinal ganglion cells (RGCs) with functional axons from human induced pluripotent stem cells. After development of the optic vesicle from the induced stem cell embryoid body in three-dimensional culture, conversion to two-dimensional culture, achieved by supplementation with BDNF, resulted in differentiation of RGCs at a rate of nearly 90% as indicated by a marginal s...
متن کاملKIF3A is a new microtubule-based anterograde motor in the nerve axon
Neurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and...
متن کاملEffects of endothelin-1 on components of anterograde axonal transport in optic nerve.
PURPOSE Increased levels of endothelins (ETs) are associated with glaucoma and have been said to contribute to the development of glaucomatous optic neuropathy. In glaucoma, movement of selected components of anterograde axonal transport essential in ganglion cell survival is impaired-specifically, the transport of mitochondria. This study evaluates the effect(s) of a single administration of i...
متن کاملProximal inhibition of p38 MAPK stress signaling prevents distal axonopathy.
The p38 mitogen-activated protein kinase (MAPK) isoforms are phosphorylated by a variety of stress stimuli in neurodegenerative disease and act as upstream activators of myriad pathogenic processes. Thus, p38 MAPK inhibitors are of growing interest as possible therapeutic interventions. Axonal dysfunction is an early component of most neurodegenerative disorders, including the most prevalent op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 56 13 شماره
صفحات -
تاریخ انتشار 2015